博客
关于我
自考操作系统概论小结
阅读量:149 次
发布时间:2019-02-28

本文共 640 字,大约阅读时间需要 2 分钟。

操作系统的发展历程

操作系统的发展始于计算机能够承担多个任务的需求。第一代计算机完全依赖人工操作,用户需要直接参与每一步任务执行。进入第二代,随着晶体管计算机的普及,单道批处理系统应运而生。这种系统通过将一批作业输入磁带,实现连续处理,尽管在IO设备低速带来的等待问题上仍然存在不足。

20世纪60年代,多道批处理系统开始显现,IBM的第一台小规模集成电路机器为其奠定基础。这种系统能够有效利用资源,提升吞吐量,但平均周转时间较长,且缺乏人机交互性。这些限制促使分时系统的出现,旨在支持多个终端并实现即时响应。

分时系统的核心优势在于多任务处理的并发性。它通过时间片轮转让多个用户能够实时互动,解决了批处理系统的交互性不足问题。这种系统架构将成为后续操作系统发展的重要基石。

实时系统作为另一个重要发展方向,要求系统对任务的响应具有严格的时间约束。其任务可分为周期性和非周期性,硬实时和软实时两大类。硬实时任务对时间要求最严格,必须在截止时间前完成执行,而软实时任务则相对宽松。

微机系统的出现带来了处理机管理的革新。处理机管理以进程为核心,实现进程的创建、调度、同步与通信。存储器管理、设备管理和文件管理则分别承担着不同的功能,确保系统资源的高效利用和用户体验的优化。

系统架构的完善使得操作系统逐渐成熟。从单道批处理到多道批处理,再到分时和实时系统的演进,每一次变革都推动了计算机技术的进步。理解这些发展历程有助于我们更好地把握操作系统的工作原理及其在现代计算机中的重要作用。

转载地址:http://dtzc.baihongyu.com/

你可能感兴趣的文章
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy学习笔记3-array切片
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>
numpy数组索引-ChatGPT4o作答
查看>>
numpy最大值和最大值索引
查看>>
NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
查看>>
Numpy矩阵与通用函数
查看>>
numpy绘制热力图
查看>>
numpy转PIL 报错TypeError: Cannot handle this data type
查看>>
Numpy闯关100题,我闯了95关,你呢?
查看>>
nump模块
查看>>
Nutch + solr 这个配合不错哦
查看>>
NuttX 构建系统
查看>>
NutUI:京东风格的轻量级 Vue 组件库
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>